문제
n × n의 크기의 대나무 숲이 있다. 욕심쟁이 판다는 어떤 지역에서 대나무를 먹기 시작한다. 그리고 그 곳의 대나무를 다 먹어 치우면 상, 하, 좌, 우 중 한 곳으로 이동을 한다. 그리고 또 그곳에서 대나무를 먹는다. 그런데 단 조건이 있다. 이 판다는 매우 욕심이 많아서 대나무를 먹고 자리를 옮기면 그 옮긴 지역에 그 전 지역보다 대나무가 많이 있어야 한다.
이 판다의 사육사는 이런 판다를 대나무 숲에 풀어 놓아야 하는데, 어떤 지점에 처음에 풀어 놓아야 하고, 어떤 곳으로 이동을 시켜야 판다가 최대한 많은 칸을 방문할 수 있는지 고민에 빠져 있다. 우리의 임무는 이 사육사를 도와주는 것이다. n × n 크기의 대나무 숲이 주어져 있을 때, 이 판다가 최대한 많은 칸을 이동하려면 어떤 경로를 통하여 움직여야 하는지 구하여라.
입력
첫째 줄에 대나무 숲의 크기 n(1 ≤ n ≤ 500)이 주어진다. 그리고 둘째 줄부터 n+1번째 줄까지 대나무 숲의 정보가 주어진다. 대나무 숲의 정보는 공백을 사이로 두고 각 지역의 대나무의 양이 정수 값으로 주어진다. 대나무의 양은 1,000,000보다 작거나 같은 자연수이다.
출력
첫째 줄에는 판다가 이동할 수 있는 칸의 수의 최댓값을 출력한다.
풀이
dfs와 dp 알고리즘을 함께 사용하여 구현하였음.
기존에 가중치를 증가시키며 재귀를 수행한 것과는 조금 다른 방식으로 가중치를 부여해야 하기 때문에 이를 코드를 구현하는데 어려움을 겪었음.
import sys
sys.setrecursionlimit(10 ** 6)
input = sys.stdin.readline
dy = (1, -1, 0, 0)
dx = (0, 0, 1, -1)
def dfs(y, x):
# 이미 이동할 수 있는 칸의 수를 구한 경우
if dp[y][x] != 0:
return dp[y][x]
dp[y][x] = 1
for i in range(4):
ny = y + dy[i]
nx = x + dx[i]
if not 0 <= ny < n or not 0 <= nx < n:
continue
if forest[y][x] < forest[ny][nx]:
dp[y][x] = max(dp[y][x], dfs(ny, nx) + 1)
return dp[y][x]
n = int(input())
forest = [list(map(int, input().split())) for _ in range(n)]
dp = [[0] * n for _ in range(n)]
ans = 0
for i in range(n):
for j in range(n):
ans = max(ans, dfs(i, j))
print(ans)
'🥇 Problem Solving > Depth-First Search' 카테고리의 다른 글
[Python] BOJ / 9466번 / 텀 프로젝트 (0) | 2022.06.24 |
---|---|
[Python] BOJ / 1967번 / 트리의 지름 (0) | 2022.05.17 |
[Python] BOJ / 2573번 / 빙산 (0) | 2022.05.01 |
[Python] BOJ / 1707번 / 이분 그래프 (0) | 2022.05.01 |
[Python] BOJ / 1520번 / 내리막 길 (0) | 2022.04.19 |